The Dimensional Representation and the Metric Structure of Similarity Data1

نویسندگان

  • AMOS TVERSKY
  • H. KRANTZ
چکیده

A set of ordinal assumptions, formulated in terms of a given multidimensional stimulus set, is shown to yield essentially unique additive difference measurement of dissimilarity, or psychological distance. According to this model, dissimilarity judgments between multidimensional objects are regarded as composed of two independent processes: an intradimensional subtractive process, and an interdimensional additive process. Although the additive difference measurement model generalizes traditional metric models, the conditions under which it satisfies the metric axioms impose severe restrictions on the measurement scales. The implications of the results for the representation of similarity data by metric and/or dimensional models are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

A Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...

متن کامل

Concepts and Application of Three Dimensional Infinite Elements to Soil Structure-Interaction Problems

This study is concerned with the formulation of three dimensional mapped infinite elements with 1/r and 1/ decay types. These infinite elements are coupled with conventional finite elements and their application to some problems of soil structure interaction are discussed. The effeciency of the coupled finite-infinite elements formulation with respect to computational effort, data preparation a...

متن کامل

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003